短程硝化工艺强化方法研究进展

   2020-08-16 聪慧网sxxjymy90
核心提示:发表于: 2020年08月16日 21时33分45秒

    慧聪水工业网 短程硝化-厌氧氨氧化工艺是一种新型高效的自养生物脱氮技术,在处理高氨氮、低碳氮比废水方面具有诸多优势和良好应用前景。相较于传统生物脱氮工艺,短程硝化-厌氧氨氧化工艺具有脱氮效率高、无需外加有机碳源、节约60%曝气量、降低90%剩余污泥产量、显著减少温室气体排放等优点。

    其关键的一步是快速启动短程硝化工艺且保持稳定的运行效果,即在短程硝化反应器中将氨氮的氧化控制并维持在亚硝态氮阶段(即亚硝化阶段)。通过调控和优化温度、水力停留时间、污泥龄、溶解氧(DO)、pH、游离氨(FA)等工作参数强化氨氧化菌(AOB)活性、抑制亚硝酸盐氧化菌(NOB)活性,提高AOB纯度和菌群竞争优势,可以实现亚硝态氮积累。较低DO浓度、较高pH和较高FA浓度都有利于短程硝化过程。

    近年来,短程硝化工艺的快速启动和稳定性维持成为废水生物脱氮领域的研究热点之一。通过优选反应器结构、外加磁场/超声波、添加化学试剂等方法,可以强化短程硝化工艺,从而提高其启动效能和运行稳定性。

    1反应器结构优选

    1.1流化床生物反应器

    在流化床生物反应器中,污水自下而上流经反应器,使载体呈流动状态,提高了氧传质效率。

    另外,载体表面的生物膜受水流冲刷而拥有较快的更新速率,从而保证较好的底物传质性能。选择适宜的载体是流化床生物反应器快速启动短程硝化过程的关键。

    赖鼎东等采用三相流化床反应器启动短程硝化,用亲水性玻璃态单体制备生物相容性高分子共聚物载体,运用固定化细胞增殖技术将AOB固定于载体。该载体具有微孔结构和良好的生物相容性,使得AOB易附着、活性高、密度大,仅一个月AOB即在载体上大量附着,生长良好。反应器温度控制在30℃,DO控制在3~5mg/L,在进水氨氮为100、75、50、25mg/L的条件下,经10d的运行亚硝化率为98.6%、94.5%、95.2%、94.7%,表明这种高分子共聚物载体及固定化细胞增殖技术有助于短程硝化快速启动。

    呼晓明等采用内循环生物流化床反应器启动短程硝化,以粒径为0.25~1.25mm、密度为2.36g/cm3、孔隙率为40%~45%的瓷粒为载体,通过反应器混合液在内外筒结构之间的内循环使载体呈流化状态,在提高生物量的同时,强化底物传质。反应器温度为31℃、pH为8.0~8.5、DO为1.5~2.5mg/L,通过逐步提高温度和进水氨氮浓度、降低DO和缩短HRT提高短程硝化性能,在第42天进水氨氮达到300mg/L,HRT缩短至8h,亚硝态氮积累率达到75%,实现稳定的短程硝化。

    1.2微生物燃料电池

    微生物燃料电池(MFC)将底物直接转化为电能,提高了能量转化效率;且可在常温条件下进行反应,反应条件温和。MFC在工业废水进行脱氮处理方面具有广泛的应用潜力,近年来成为一种新兴的短程硝化工艺强化手段。MFC强化短程硝化工艺主要从以下两个方面实现:

    (1)由于MFC的电子传递作用,在阴极氧气得电子发生氧化还原反应——酸性条件下氧气与氢离子反应生成水,碱性条件下氧气与水反应生成OH-,维持MFC阴极具有较高的pH环境,同时质子膜延缓质子迁移速率,为pH升高创造有利条件,而较高的pH有利于短程硝化。

    (2)MFC阴极pH升高影响FA浓度升高,高浓度FA会抑制NOB活性,有利于亚硝态氮的积累。MFC不仅能在强化短程硝化工艺的同时收集电能,且由于阴极的氧化还原反应维持了反应器阴极室较高的pH环境,从而能节约外加碱度。

    贾璐维等利用双室曝气阴极MFC,在开路电压为620.7mV、内阻为112Ω、最大功率密度为81W/m3的条件下,令短程硝化发生在MFC阴极,控制进水氨氮为60mg/L,反应器连续运行21d使亚硝化率达到95%以上,通过MFC强化作用实现短程硝化工艺的快速启动和稳定运行。

    1.3膜生物反应器

    膜生物反应器(MBR)的优点有:高效的截留能力有利于富集生长增殖缓慢的AOB,从而提高短程硝化反应效率;以膜分离代替泥水分离能力使得出水水质良好;具有较小的占地面积。

    GangWang等使用工作体积为4.5L的MBR,设置膜面积为0.024m2、孔径为0.1μm的浸没式平板微滤膜结构,控制温度、pH、DO分别为35℃、7.9~8.2、<0.3mg/L,在启动阶段将进水氨氮从70mg/L逐步提高至290mg/L,利用好氧/厌氧为1.0min/(2.5~3.1)min的间歇曝气的方式,仅用21d就实现了短程硝化过程,MBR中异养活性污泥细菌逐渐被自养AOB取代,亚硝酸盐积累率在50%以上,总氮去除率在第45天之后稳定在85%以上。

    XiaowuHuang等在工作体积为3.2L的MBR中间安装有效面积为0.03m2、孔径为0.25μm的浸没式中空纤维膜组件,保持温度在32.0℃,pH7.25~7.35,恒定氨氮负荷0.24kgN/(m3·d),在第1天—第19天,控制DO在1.2~1.5mg/L,氨转化率从73.8%增加到84.9%,产生硝酸盐仅为(2.3±1.1)mgN/L,表明亚硝酸盐在MBR中有效积累,实现短程硝化过程的启动。从第26天开始,短程硝化稳定运行,出水NO2--N/NH4+-N为1.15±0.09,实现亚硝酸盐积累率高达94.6%±3.1%。

    ZhaoNiu等在MBR中心布置中空纤维膜组件,膜材料为聚偏二氟乙烯,膜与水的接触角为79.4°±1.0°,膜孔径为0.03μm,膜有效表面积为0.11m2,在该MBR中接种硝化细菌启动短程硝化工艺。将氨氮负荷控制在300mg/(L·d),HRT为24h,温度控制在(37±0.5)℃,pH控制在7.4~8.3,DO约1mg/L,反应器的搅拌速度设定为约100r/min。10d后进水NH4+-N的50%转化为亚硝态氮,出水硝态氮与亚硝态氮比例接近1:1.32,实现短程硝化工艺的快速启动。

    2磁场/超声波强化

    2.1超声波强化

    超声波技术在污水处理中具有无二次污染、反应条件温和、处理效率高、应用范围广等优点。超声会对不同功能性菌的活性产生不同的影响。有研究表明,超声波产生的局部空化作用能提高AOB活性,抑制NOB活性。

    超声波可影响AOB生长代谢过程,随着超声功率强度的增加,AOB活性先达到峰值后下降,而NOB活性却持续下降;在超声处理的SBR中,AOBNitrosomonas属在生物量中能保持一定的水平,但NOBNitrospira在30d内消失,因此,适合的超声强度可选择性抑制NOB活性,促进亚硝态氮的积累,使短程硝化启动和运行效能被强化。

 
举报收藏 0打赏 0评论 0
 
更多>同类资讯
  • sxxjymy
    加关注0
  • 没有留下签名~~
推荐图文
推荐资讯
点击排行
网站首页  |  用户协议  |  关于我们  |  联系方式  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  浙ICP备16039256号-5  |  浙公网安备 33060302000814号