收藏!干扰同步脱氮除磷效率的5个因素及对策!

   2020-07-17 聪慧网sxxjymy60
核心提示:发表于: 2020年07月17日 19时03分58秒

    慧聪水工业网 1、泥龄问题

    作为硝化过程的主休,硝化菌通常都属于自养型专性好氧菌.这类微生物的一个突出特点是繁殖速度慢,世代时间较长.在冬季,硝化菌繁殖所需世代时间可长达30d以上;即使在夏季,在泥龄小于5d的活性污泥中硝化作用也十分微弱.聚磷菌多为短世代微生物,为探讨泥龄对生物除磷工艺的影响,Rensink等(1985年)用表1归纳了以往的研究成果,并指出降低泥龄将会提高系统的除磷效率。

1

    由表1可见聚磷微生物所需要泥龄很短。泥龄在3.0d左右时,系统仍能维持较好的除磷效率.此外,生物除磷的唯一渠道是排除剩余污泥.为了保证系统的除磷效果就不得不维持较高的污泥排放量,系统的泥龄也不得不相应的降低.显然硝化菌和聚磷菌在泥龄上存在着矛盾.若泥龄太高,不利于磷的去除;泥龄太低,硝化菌无法存活,且泥量过大也会影响后续污泥处理.针对此矛盾,在污水处理工艺系统设计及运行中,一般所采用的措施是把系统的泥龄控制在一个较窄范围内,兼顾脱氮与除磷的需要.这种调和,在实践中被证明是可行的。

    为了能够充分发挥脱氮与降磷两类微生物的各自优势,可采取的其它对策大致上有两类。

    第一类是设立中间沉淀池,搞两套污泥回流系统使不同泥龄的微生物居于前后两级(见图1),第一级泥龄很短,主要功能是除磷;第二级泥龄较长,主要功能是脱氮.该系统的优点是成功地把两类泥龄不同的微生物分开.但是,这类工艺也是存在局限性.第一,两套污泥回流系统,再加上中间沉淀池和内循环,使该类工艺流程长且比较复杂.第二,该类工艺把原来常规A2/O(见图25)工艺中同步进行的吸磷和硝化过程分离开来,而各自所需的反应时间又无法减少,因而导致工艺总的停留时间变长.第三,该工艺的第二级容易发生碳源不足的情况,致使脱氮效率大受影响.此外,由于吸磷和硝化都需要好氧条件,工艺所需的曝气量也可能有所增加。

1

    第二类方法是在A2/O工艺好氧区的适当位置投放填料.由于硝化菌可栖息于填料表面不参与污泥回流,故能解决脱氮除磷工艺的泥龄矛盾.这种作法的优点是既达到了分离不同泥龄微生物的目的,又维持了常规A2/O工艺的简捷特点。

    但是该工艺也必须解决好以下几个问题:①投放填料后必须给悬浮性活性污泥以优先的和充分的增殖机会,防止生物膜越来越多而MLSS越来越少的情况发生;②要保证足够的搅拌强度,防止因填料截留作用致使污泥在填料表面间大量结团;③填料投放量必须适中,投放量太少难以发挥作用,太多则难免出现对污泥的截留.此外,填料的类型和布置方式都应作慎重考虑。

    2、碳源问题

    碳是微生物生长需要要最大的营养元素.在脱氮除磷系统中,碳源大致上消耗于释磷,反硝化和异养菌正常代谢等方面.其中释磷和反硝化的反应速率与进水碳源中的易降解部分,尤其是挥发性有机脂肪酸(VFA)的数量关系很大.一般来说,城市污水中所含的易降解COD的数量是十分有限的,以VFA为例,通常只有几十mg/L.所以在城市污水生物脱氮除磷系统的释磷和反硝化之间,存在着因碳源不足而引发的竞争性矛盾。

    解决这一问题一般需要从两个方面来考虑.一是从工艺外部采取措施,增加进水易降解COD的数量,例如取消初沉池,污泥消化液回流,将初沉池改为酸化池等都有一定作用,还可考虑外加碳源的方法.二是从工艺内部考虑,权衡利弊,更合理地为反硝化和释磷分配碳源,常规脱氮除磷工艺总是优先照顾释磷的需要,把厌氧区放在工艺的前部,缺氧区置后.这种作法当然是以牺牲系统的反硝化速率为前提.但是,释磷本身并不是脱氮除磷工艺的最终目的.就工艺的最终目的而言.把厌氧区前置是否真正有利,利弊如何,是值得进一步研究的.根据对厌氧有效释磷可能并不是好氧过度吸磷充分必要条件的新认识,倒置A2/O工艺(见图3)将缺氧区放在工艺最前端,厌氧区置后。经过这种改变,脱氮菌可以优先获得碳源,反硝化速率得到大幅度提高.同时,原来困扰脱氮除磷工艺的硝酸盐问题不存在了,所有污泥都将经历完整的释磷和吸磷过程,除磷能力不仅未受影响,反而有所增强。这种新的碳源分配方式对脱氮除磷工艺的实践和机理研究都有重要意义。

1

    3、硝酸盐问题

    在常规A2/O工艺中,由于厌氧区在前,回流污泥不可避免地将一部分硝酸盐带入该区.硝酸盐的存在严重影响了聚磷蓖的释磷效率,尤其当进水中VFA较少,污泥的含磷量又不高时,硝酸盐的存在甚至会导致聚磷菌直接吸磷.所以在常规A2/O工艺框架下,如何避免硝酸盐进入厌氧区干扰释磷一度成为研究热点,并围绕这一问题产生了诸如UCT工艺,JHB工艺,EASC工艺等,其中最著名的应属UCT工艺(如图4)。

1

    解决硝酸盐问题的关键是如何在回流污泥进入厌氧区之前,设法将其携带的硝酸盐消耗掉.一种方法是在回流污泥进入厌氧区之前,先进处一个附设的缺氧池,在这个缺氧池中回流污泥携带的硝酸盐利用污泥本身的碳源反硝化。由于没有外加碳源,这种反硝化实际上多属内源代谢,因此反硝化速率不高。作为对第一种方法的改进,另一种方法通过投加外加碳源或引入一部分污水来提高附设缺氧池的反应速率。

    UCT工艺另辟蹊径,把常规A2/O工艺的缺氧区分为前后两个部分(如图4)。内循环1将硝化液从好氧区(O)回流至缺氧区(A2),内循环2将A2区前部的混合液循环至A1区,回流污泥不是直接进入A1区,而是先进入A2区前部。这种作法实际上是划出一个小的缺氧区专门消耗回流污泥中的硝酸盐,故避免了回流污泥中的硝酸盐对厌氧区的冲击,改善了聚磷菌的释磷环境。但是,进入A2区前部的回流污泥实际上只有一小部分由内循环2运至A1区,其余大部分未经释磷直接进入后续工艺。也就是说,在所排除的剩余污泥中只有一小部分经历了完整的释磷、吸磷全过程,其实际除磷效果可能因此而大受影响。常规A2/O工艺实际上也存在类似缺陷。

    4、系统的硝化和反硝化容量问题

    硝化和反硝化是生物除磷脱氮系统密不可分的两个过程。硝化不充分,出水氨氮必然升高,反硝化能力也发挥不出来;反硝化不充分出水硝酸盐就会上升。怎样配置恰当的硝化和反硝化容量,充分发挥它们的潜力,是脱氮除磷工艺设计和运行的一个重要问题。系统的硝化和反硝化能力首先是决定于各自相应区域的水力停留时间(或有效容积)。对于城市污水来说,一般夏季的反硝化和硝化分别需要1~2h和3~4h,考虑冬季低温的影响通常确定反硝化时间为2~3h,硝化时间为5~6h。决定硝化和反硝化能力的第二个因素是工艺布置形式。例如和常规A2/O工艺相比,缺氧区前置的倒置A2/O工艺可明显提高系统反硝化能力。而在好氧区适当投放填料则会提高系统的硝化能力。

    通过改变运行参数也可以对系统的硝化和反硝化能力进行调整。延长泥龄,加强曝气和搅拌,有利于提高好氧区的硝化能力;适当缩短泥龄,降低溶解氧水平,则有利于提高系统的反硝化能力。

    对于前置反硝化来说,内循环比是十分重要的运行参数,对硝化、反硝化以及释磷、吸磷都有重要影响。表面上,内循环是把硝化液从硝化区回流至反硝化区。在一定范围内,内循环比越大,出水硝酸盐越少。但是,内循环给系统带来的一个不可忽视的问题是,硝化液中的溶解氧对缺氧环境具有破坏作用。当存在溶解氧时,脱氮菌总是优先利用游离氧作为电子受体氧化有机物,反硝化过程因而被阻碍。而且,随着内循环加大,系统中的短流现象也会越来越明显。所以即使不考虑动力消耗,内循环比也不宜过大。此外,对于常规A2/O工艺,若内循环比过大,则参与释磷吸磷过程的污泥比例将会严重减少,影响除磷效率。因此,对于一定的工艺系统,内循环比应有一个恰当的范围,并随水质、水量和温度的变化而适当调整。

    5、释磷与吸磷的容量问题

    释磷和吸磷是相互关联的两个过程。一般认为,聚磷菌只有经过充分的厌氧环境并释磷才能更好地吸磷,而且,也只有吸磷良好的聚磷菌才会在厌氧或缺氧条件下大量释磷。关于释磷、吸磷的机理至今还有许多方面尚未研究清楚。对于运行良好城市污水生物脱氮除磷系统来说,一般夏季的释磷和吸磷时间分别需要115~215h和2~3h,冬季低温环境下两者所需的时间均应适当延长。

    在A2/O工艺中,吸磷和硝化是同步进行的,而硝化时间较长,故吸磷容量通常不成问题。从系统的角度看,微生物的厌氧释磷过程似更为关键。以往关于厌氧释磷过程时间的确定,多是就释磷本身以释磷曲线为依据进行研究的。但是,释磷并不是处理系统的最终目的,当把释磷和吸磷过程以及最终的除磷效果联系起来进行考察时就会发现,单纯按照上述方法来确定厌氧区的HRT是不充分的。根据有关厌氧历时对除磷效率影响的研究表明:在一定范围内,适当延长厌氧反应时间,降低厌氧区氧化还原电位,可以明显提高系统的除磷效率。因此,脱氮除磷工艺厌氧区的HRT还应进一步延长,例如夏季采用2~3h,冬季采用3~4h。

 
举报收藏 0打赏 0评论 0
 
更多>同类资讯
  • sxxjymy
    加关注0
  • 没有留下签名~~
推荐图文
推荐资讯
点击排行
网站首页  |  用户协议  |  关于我们  |  联系方式  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  浙ICP备16039256号-5  |  浙公网安备 33060302000814号